MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version			Syllabus	Paper	
			IGCSE – May/June 2012			0607	41	
1	(a) (i)	160 0	00 000 oe	2	M1 for 0	$.0239 \times 6.78 \times 10^{9}$	oe	
			0 0		Implied by $1.62 \times 10^{\circ}$ oe			
	(ii)	1.6 ×	10° or $1.62 \times 10^{\circ}$	1ft	ft their (i) or their more accurate value seen in			(i)
	(b)	0.482	(0.4823)	2	M1 for $\frac{3.27 \times 10^7}{6.78 \times 10^9}$ [×100] oe implied by figs 48			
	(c)	2 520 millic	000 000 or 2.52(0) × 10 ⁹ or 2520 m	3	SC2 for 2 520 4 or 2.5204 × 10^9 or 2520.4 million M2 for \div 2.69 oe (M1 for evidence of 269 (%)) If M0, SC2 for 4 012 000 000 or 4.012 × 10^9 or 4012 million or SC1 for 4 010 000 000 or 4 011 8 or 4.01 × 10^9 or 4.0118 × 10^9 or 4011.8 million (this is \div by 1.69))) or [8]
2	(a)	8.39 ((8.393 to 8.394)	2	M1 for 18tan25 oe i.e. explicit expression			
	(b)	130 ((129.7) www 3	3	M1 for $0.5 \times 18 \times$ their (a) oe (75.5 to 75.6) M1 for $0.5 \times 18 \times 9 \times \sin 42$ oe (54.19 to 54)			20)
	(c)	12.8 ((12.81) www 3	3	M1 for $9^2 + 18^2 - 2 \times 9 \times 18 \cos 42$ oe A1 for 164.2 seen			[8]
3	(a) (i)	$\begin{pmatrix} 5 \\ -3 \end{pmatrix}$		1				
	(ii)	5.83 ((5.830 to 5.831) ft	2 ft	ft their (i). Allow $\sqrt{34}$ as final answer M1 for $5^2 + 3^2$ oe			
	(b) (i)	Refle	ction, $x = 5$	2	B1, B1 independent lose all marks if extra transformation			
	(ii)	Enlar	gement, (0, 0) [Factor] 3	3	B1, B1, B1 independent lose all marks if extra transformation [ra [8]
4	(a)	29.4		2	M1 for indication of use of mid-values (implie figs 294)			ed by
	(b)	Curve (40, 8	e through (20, 20), (30, 56), 88), (80, 100)	3	B1 for 56, 88 and 100 seenP1 ft for three correct plots ft attempt at cum. frequencies.C1 for correct shape through at least 2 of their points			r
	(c) (i)	27 ≤	<i>t</i> < 30	1				
	(ii)	12 to	15	2	Dependent on P1 M1 for (34 to 37) or (21 to 22)			
	(iii)	100 – (0.5 s	their reading off cum freq graph quare accuracy)	2	Must be an integer. SC1 for their reading off cum freq graph (0.5 squa accuracy) – may be on graph or answer 62 [16]			quare [10]

Page 3		3	Mark Scheme: Teachers' version		Syllabus	Paper		
			IGCSE – May/June 2012		0607	41		
		1		1	r			
5 ((a) (i)	1810	(1808 to 1810)	3	Allow 576 π as final answer M1 for $\frac{1}{3}\pi \times 8^2 \times 11(\frac{704}{3}\pi, 736.8 \text{ to } 737.3$ M1 for $\frac{2}{3}\pi \times 8^3(\frac{1024}{3}\pi, 1071 \text{ to } 1072)$			
	(ii)	2.08	(2.079 to 2.082)	2 ft	it ft their (i) $\times 1.15 \div 1000$ oe M1 for their (i) \times figs 115 soi by figs 208 to 2082			2079
((b) (i)	744 (4 M1 for (sloping edge) ² = $11^2 + 8^2$ or better so 185) (sq root = 13.60) M1 for cone = $\pi \times 8 \times \sqrt{their(11^2 + 8^2)}$ (so 341.6 to 341.9) M1 for hemisphere = $2\pi \times 8^2$ soi (401.9 to 402.2)				en (= by	
	(ii)	0.11		2 ft	ft 81.5 ÷ their (i) with same rounding require SC1 ft for 0.1094 to 0.1096 or 0.110			
6 ((a) (i)	86		1				
	(ii)	188		1				
	(iii)	4		2 ft	ft $0.5 \times$ their (ii) – 90 if answer positive B1 for angle $BOD = 172$ (may be on diagr)
((b)	46		2	SC1 for angle $DBC = 46$ or angle $BAC = 40$ be on diagram)			
7 ((a)	68.6	(68.57)	2	M1 for $720 \div (7.5 + 3)$ or better			
((b) (i)	9 <i>x</i> o	$r 9 \times x \text{ or } x \times 9$	2	M1 for $7.5 \times x$ or $3 \times \frac{x}{2}$ (not from $x + \frac{x}{2}$)			
	(ii)	80 ft		1 ft	ft 720 \div their coefficient of x where answer to (b)(i) is in simplified form			
((c)	5:1	oe	2	Allow non-reduced e.g. $600: 120$ or $7.5: 1.5$ isw incorrect cancelling after correct answer M1 for $7.5 \times$ their (b)(ii) and $1.5 \times$ their (b)(ii) [7			

Page	Mark Scheme: Teachers' version			Syllabus	Paper]
	IGCSE – May/June	2012		0607	41	
8 (a) (i)		2	for reason	nable shape includin poor quality e.g. cub	g horizontal infle	exion
(ii)	-1, 0, 1	3	B1, B1, B	31		
(iii)	(0.775 or 0.7745 to 0.7746, – 0.186 or – 0.1859…)	2	B1, B1 SC1 for 0.77 or 0.78 and – 0.19			
(iv)	0.5	1	Condone – 1.04 or – 1.041 to – 1.040 or 0.942 o 0.9423			2 or
(v)	Rotational, [order]2 or point symmetry [about] (0, 0)	netry3B2 (or B1 for rotational) condone 180 for order B1 Deduct 1 if line symmetry also given			er 2	
(b) (i)	$y = -\frac{x}{5}$ oe	1				
(ii)	Reasonable line through origin with negative gradient	1	Must cut	curve 5 times		
(iii)	$\pm 0.851 \text{ or } \pm 0.8506 \text{ to } 0.8507, 0$	2	2 B1, B1			[15]
9	Allow non-reduced fractions and decimal Do not allow words or ratios. isw any incorrect cancelling or converting	s or perce	ntages.			
(a)	$\frac{8}{30}$ oe www 2	2	M1 for $\frac{2}{5}$ (0.266 to	$\frac{2}{5} \times \frac{4}{6}$ oe 0.267)		
(b)	$\frac{108}{540} = \frac{1}{5}$ oe www 3	3	M2 for $\frac{2}{3}$ product)	$\frac{2}{3} \times \frac{2}{5} \times \frac{1}{4} + \frac{1}{3} \times \frac{4}{6} \times \frac{1}{3}$	$\frac{3}{5}$ oe (M1 for eit	her
(c)	3	3	M2 for co $\times \frac{3 \text{ or } 2}{5}$ (M1 for f	ombining valid prob first probability tried	abilities e.g. $\frac{4}{6}$ the formula $\frac{4}{6}$ is the formula $\frac{4}{6}$	then [8]

Page 5		Mark Scheme: Teachers' version			Syllabus	Paper	
		IGCSE – May/June	2012		0607	41	
10 (a)		/	2	Exponent	tial shape over full	domain outting	
	<u> </u>		2	positive <i>x</i> -axis and negative <i>y</i> -axis SC1 for partial domain only or slight upturn at h hand side			t left
(b)	<i>y</i> = -	3 oe	1				
(c) (i)	-2.75	$5 \le f(x) \le 1$	2	B1, B1 Allow in words. Condone < . Allow y or x for $f(x)$			or x
(ii)	f(x) >	- 3	1	Allow f(x	$(x) \ge -3$ and allow	y or x and/or word	ls
(d)	$\frac{\log 3}{\log 2}$	or $\log_2 3$ final answer	2	SC1 for 1.58 or 1.584 to 1.585 – may be on diagra or $\frac{\log 3}{\log 2}$ or $\log_2 3$ seen			agram [8]
11 (a)	- 9		2	B1 for –	6 seen		
(b)	-4		2	M1 for 2	2x + 3 = x - 1 or b	etter	
(c)			2	B2 Curve must lead Allow B1 poor qual Use of fo better, se	e(s) could be for other to 2 correct solution for curve leading lity. for mula, B1 for $\sqrt{(-1)}$ en anywhere	to correct solution $\overline{2)^2 - 4(1)(-2)}$ or	t ns but r
				If form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or better B1 for $p = -(-2), r = 2(1)$ or better $\frac{2\pm\sqrt{12}}{2}$ Use of completing the square B1 for a correct completed square then B1 for correct explicit statement for x.			
	- 0.73	3, 2.73 cao	2	B1 B1 If 0 scored, SC1 for – 0.7 or – 0.7321 0.7320 and 2.7 or 2.7320 to 2.7321 W working – maximum score of 2			to – ithout
(d)	$\frac{x-3}{2}$	oe final answer	2	M1 for $x = 2y + 3$ or $y - 3 = 2x$ or $\frac{y}{2} = x + \frac{y}{2}$		$x + \frac{3}{2}$	
(e)	$\frac{3}{(2x-1)}$	$\frac{3x+2}{3(x-1)}$ final answer	3	Allow $2x^2 + x - 3$ for denominator. M1 for denominator $(2x + 3)(x - 1)$ or $2x^2 + x - 3$ M1 for numerator $(x - 1) + (2x + 3)$ with or without brackets			[13]

Page	6 Mark Scheme: Teacher	Syllabus	Paper			
	IGCSE – May/June 2012			0607	41	
					·	-
12 (a)		3	B1 $x = 5$ ruled B1 $y = -x$ ruled 1mm accuracy at $(-2, 2)$ and $(2, -2)$ B1 $y = 4 - 2x$ ruled Allow 1 mm accuracy at $(0, 4)$ and $(2, 0)$ In each case line must be long enough to enclour area in next part			ose
(b)	Region correct cao	2	Dep on B3 SC1 if correct side of three correct boundaries			
(c)	h = 3, k = -1 cao	2	SC1 for other point in region such that $x + 3y = 0$			[9]
13 (a)	Points (50, 8), (55, 10) and (45, 13) plotted	2	P1 for 2 o	correct points		
(b)	Negative correlation cao	1				
(c) (i)	47 cao	1				
(ii)	11.9 cao	1				
(d)	$-0.312x + 26.6 \text{ or} - 0.3123x + 26.58}$	2	isw if cor B1 for – SC1 for	rect answer rounde 0.312x + c or $a-0.31x + 27$	kd kx + 26.6	
(e)	16.6	1 ft	ft their linear equation in (d). Allow 17. Allo in ft			v 2 sf
(f)	Ruled line from $x = 30$ to 55, through (their 47, their 11.9) with 1 mm accuracy and 18 on the vertical axis with 1 small square accuracy	2	B1 if ruled line through mean point with negation gradient			tive
(g)	Their integer reading at $x = 43$	1 ft	Integer only Strict ft their graph if ruled line with negative gradient [1			e [11]

Page 7	Page 7 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0607	41


```
y=x^5-x^3
y=-x/5
```